Product Specifications

DB636-C

Andrew® Omni Antenna, 450-482 MHz, 360° horizontal beamwidth, fixed electrical tilt

- Omnidirectional antenna
- Rugged, durable design, heavy duty radome for minimum tip deflection
- Invert mountable

Electrical Specifications

Frequency Band, MHz	450-482
Gain, dBi	8.1
Beamwidth, Horizontal, degrees	360
Beamwidth, Vertical, degrees	20.0
Beam Tilt, degrees	0
VSWR Return Loss, dB	1.5 14.0
Input Power per Port, maximum, watts	500
Polarization	Vertical
Impedance	50 ohm

General Specifications

Antenna Brand Andrew®

Antenna Type Omni

Band Single band

Operating Frequency Band 450 – 482 MHz

Performance Note Outdoor usage

Mechanical Specifications

Color Horizon blue
Lightning Protection dc Ground
Radiator Material Brass

Radome Material Fiberglass, UV resistant

RF Connector Interface N Female
RF Connector Location Bottom
RF Connector Quantity, total 1

Wind Loading, maximum 286.5 N @ 100 mph 64.4 lbf @ 100 mph

Wind Speed, maximum 354 km/h | 220 mph

Dimensions

 Length
 2895.6 mm | 114.0 in

 Outer Diameter
 63.5 mm | 2.5 in

 Net Weight
 13.6 kg | 30.0 lb

Regulatory Compliance/Certifications

Product Specifications

DB636-C

Agency

RoHS 2011/65/EU China RoHS SJ/T 11364-2006 ISO 9001:2008

Classification

Compliant by Exemption
Above Maximum Concentration Value (MCV)
Designed, manufactured and/or distributed under this quality management system

Included Products

DB365-OS — Pipe Mounting Kit that consists of two clamps for mounting antennas to round members 1.25 - 3.5 in (35 - 89 mm) OD round members.

* Footnotes

Performance Note

Severe environmental conditions may degrade optimum performance